
An Empirical Study of Testing Practices in Virtual Reality Software
Isabella Attisano1, Xue Qin1, Dhia Elhaq Rzig2, Foyzul Hassan2

1Villanova University, 2University of Michigan-Dearborn

• This work is a collaboration research with University of
Michigan-Dearborn.

• This work is done by the support of Department of
Computer Science, Villanova University

• Contact xue.qin@villanova.edu for more information

Acknowledgements

By studying and manually analyzing a series of 98 Virtual
Reality projects, it became apparent that software testing of
virtual reality projects is limited. Only 61.2% of the 98
projects contained at least 1 test method, and only 15% of
those 60 contained more than 10 test methods. Among
these 60 projects, 30.7% contained test methods from
existing packages. This indicates that most developers do
not write their test methods. This could stem from the
difficulty of implementing VR tests due to VR’s dependence
on user input and interaction. Moreover, automatic test
generation is difficult for VR projects, and consequently,
most testing is done manually by developers. However, it is
important to note that 35% of these 60 projects did contain
unit testing.
Our future work in this area will seek to answer the following
research questions: what is the design quality of test
practices in VR software. By completing these objectives,
we may enlighten the future researchers to find the potential
solutions to improve the test efficiency of the VR Software.

Conclusion and Future Work

Study Setup
• A total of 98 VR GitHub repositories were re-collected

from an existing study [3]. All the projects were updated
to the newest version by the time we conducted the
study.

• These repositories were selected based on the criteria:
#C-based VR projects, Unity platform supported, and
contained at least 100 commits.

Objective 1 Analysis
• To discover the quantity of existing testing practices among

all project repositories, we created a static analysis script
which automatically report all the locations in project
source codes that has "test" keyword. These locations
include variables, statements, methods, classes and
annotations.

• Then, we carried out a manual analysis of all the projects
to validate the automated discovered test methods. We
excluded all the wrongly or repeated labelled test
methods, and then located and recounted any unreported
test methods.

Objective 2 Analysis
• As shown in Figure 2, different types of test approaches have

been adopted to evaluate the quality and assurance of the
software. To uncover frequent used test granularity and type,
we manually classify each test method and categorized
them to one of the testing types (e.g., system testing,
performance testing, and unit testing) by reading and
understanding the source code.

• Figure 3 shows one example of the Unit Test in Virtual
Reality Project. It includes the NUnit annotations:
[Setup], [TearDown], [Test]. Besides this general
format, Unity platform also provides annotation such as
[UnityTest] to support the Unit Test using Unity
framework.

References

Software Testing is the critical step in software development to
safeguard against problems such as significant financial
losses, security breaches, and performance issues, before the
software release. Many research approaches have been
developed to improve the accuracy and efficiency of Software
Testing. Among all types of software, Virtual Reality(VR), a
form of software that simulates a 3D world paralleling true
reality, has grown popular [1] recently due to its significant
impact on the user’s senses and physical wellbeing. However,
little research effort [2] has been paid on software testing of
VR. Moreover, VR software is difficult to test due to its different
features compared to normal software, such as dependence
on user interaction and special VR frameworks.
This empirical study aimed to conduct a manual analysis to
identify the testing practices of existing VR projects.
Specifically, we focus on finding the unit test cases among all
the VR projects collected from GitHub. Furthermore, we
endeavored to discover other types of testing such as system
testing, integration testing, and performance testing. In the
future, we will use the study result to identify the primary
limitations of VR testing and suggest comprehensive
improvements to increase the effectiveness of VR software
testing.

Abstract

Virtual Reality (VR) is a form of computer simulation that
allows a user to interact with their surroundings as if they
were in the real world by simulating the five senses in order.
In addition to VR technology, other technological realities
include augmented Reality (AR), Mixed Reality (MR), and
extended reality (XR). Figure 1 shows an example
framework for developing virtual reality software and how
virtual reality relies on both software and hardware.
j

In software testing, unit testing is crucial as it allows a tester
to better understand specific code performance by testing
small, single units of projects such as a single
method. Unity platform is an Integrated Development
Environment (IDE) that allows developers to create 3D
worlds by employing VR devices such as Oculus or
HoloLens and creating and managing objects and scenes. .
Unity includes the Test Runner framework to execute test
cases for VR projects and Unity also integrates the NUnit
library to support the general test cases in C#.

Background

Methodology

• If the program in its entirety was tested, we then
classified this as a system test. System tests could
typically be identified if the class was identified to
be a test class and contained methods such
as Start(), Update(), and OnDestroy().
This indicated it was testing an entire system rather
than a single unit or a group of units. Figure 4
shows an example of the system testing in project
MixedRealityToolkit-Unity.

j

• Unity platform also provides its own featured testing
framework that come with the methods like
TestStarted(), TestFinished(),
RunStarted(), and RunFinished().

• Lastly, performance tests were identified if the
method appeared to test attributes of the project
such as responsiveness, speed, etc., rather than
units like methods.

Methodology (cont.)
1. Conduct a manual analysis of a collection of VR projects

from Github to discover the quantity of existing testing
practices.

2. Among all test practices, uncover frequent used test
granularity and type.

Objectives

Figure 1: An example framework for VR software

Figure 2: Software Testing Types

Figure 3: VR Testing Example 1

[1] J. Molina, X. Qin, and X. Wang, "Automatic Extraction of Code
Dependency in Virtual Reality Software." IEEE/ACM 29th International
Conference on Program Comprehension (ICPC). Web.
doi:10.1109/ICPC52881.2021.00043.
[2] S. Andrade, F. Nunes and M. Delamaro, "Towards the Systematic
Testing of Virtual Reality Programs," in 2019 21st Symposium on
Virtual and Augmented Reality (SVR), Rio de Janeiro, Brazil, 2019 pp.
196-205. doi: 10.1109/SVR.2019.00044
[3] F. Nusrat, F. Hassan, H. Zhong and X. Wang, "How Developers
Optimize Virtual Reality Applications: A Study of Optimization Commits
in Open Source Unity Projects," 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), 2021, pp. 473-485, doi:
10.1109/ICSE43902.2021.00052.

Unit Testing Practices
• Only 35% of the studied projects contained unit

testing. The average percentage of unit tests per
project was 38%, and after removing the outliers, it
gives us roughly 29%.

Invalid Test Methods in VR Packages
• Among all the 60 projects that includes the test

methods, 30.7% of them contained test methods
solely from existing VR packages. For instance,
52.6% of them are using StreamVR package.

• However, testing Methods in VR packages are
predefined as examples, and later we found that
they are not being executed when running the test
tools in Unity.

Results Discussion

Objective 1 Results
• Among 98 VR projects, only 61.2% (60 out of 98)

projects include one or more test methods.
• The average number of tests per project is 53 with

a standard deviation of 129.6, where the maximum
number of test methods is 896 and the minimum is
2.

Objective 2 Results
• Among the 180 test methods we identified in 98 VR

projects, the percentage for each test type is shown
in Figure 5, where Unit Testing holds 35%,
Integration Testing holds 35%, System Testing
holds 6.67%, and Performance Testing holds 3.3%.

Study Results

Figure 5: Testing Types Percentage

Figure 4: VR Testing Example 2

